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Differential equations governing the time evolution of distribution functions 
for Brownian motion in the full phase space were first derived independently 
by Klein and Kramers. From these so-called Fokker-Planck equations 
one may derive the reduced differential equations in coordinate space known 
as Smoluchowski equations. Many such derivations have previously been 
reported, but these either involved unnecessary assumptions or approxima- 
tions, or were performed incompletely. We employ an iterative reduction 
scheme, free of assumptions, and calculate formally exact corrections to 
the Smoluchowski equations for many-particle systems with and without 
hydrodynamic interaction, and for a single particle in an external field. 
In the absence of hydrodynamic interaction, the lowest order corrections 
have been expressed explicitly in terms of the coordinate space distribution 
function. An additional application of the method is made to the reduction 
of the stress tensor used in evaluating the intrinsic viscosity of particles in 
solution. Most of the present work is based on classical Brownian motion 
theory, but brief consideration is given in an appendix to some recent 
developments regarding non-Markovian equations for Brownian motion. 
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1. I N T R O D U C T I O N  

By 1917 the theory of Brownian motion pioneered by Einstein, (1) Smolu- 
chowski, ~2~ and Langevin ~8~ had been generalized in two significant ways. 
Fokker ~4~ and, more generally, Planck c5~ had considered Brownian motion in 
velocity space, while Smoluchowski ~6~ extended the coordinate-space de- 
scription to account for the influence of an external force on the Brownian 
particle. Both of these generalizations consisted in finding a differential 
equation whose solution was the distribution function for the process being 
considered. To complete this picture, there remained the task of finding the 
appropriate differential equation in the full phase space of the Brownian 
particle. 

Kramers ~v is often credited with first presenting this generalization. 
Actually this had already been accomplished much earlier by Klein, ~8) who 
treated a many-particle system in which interparticle forces were present, but 
hydrodynamic interactions among the particles were absent. Basing his 
analysis on the Langevin equations for the velocities of the particles, he 
obtained a differential equation in phase space of the type commonly de- 
scribed by the names Fokker-Planck or Kramers. Klein further provided an 
approximate reduction of this equation to a many-particle diffusion equation, 
thus generalizing Smoluchowski's C6) earlier work and providing a link be- 
tween the two levels of description. 

Not too long after Kramers, Chandrasekhar c9~'2 presented a somewhat 
different derivation of the single-particle equation in phase space, but still 
followed Kramers 'tT) argument in order to extract Smoluchowski's equation. 
The relationship of these two levels of description has continued to be the 
subject of further investigation, and the present article deigns to proceed in 
that spirit. 

The Smoluchowski equation is conventionally described as the long- 
time limit of the velocity-averaged Fokker-Planck-Klein-Kramers (FPKK) 
equation. Yet, in 1954 Mark Kac is reported ~1~ to have remarked that a 
satisfactory demonstration of this reduction had still not been presented. As 
we shall see, subsequent work seems still not to have fully remedied this 
deficiency. More recently, Nelson ~11~ has expressed a similar concern. He 
considers the problem in terms of the Langevin equations employed in the 
Ornstein-Uhlenbeck (12,~8~ theory. Then he shows that " . . .  the Smoluchowski 
approximation in the case of a general external force . . ,  is in a very strong 
sense the limiting case of the Ornstein-Uhlenbeck theory for large friction" 
(Ref. 11, p. 70). He has also suggested how to obtain a similar result using the 
language of partial differential equations. This is the result we desire. How- 

2 This article contains an extensive bibliography concerning the early development of 
classical Brownian motion theory. 
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ever, we shall not embark upon his program, but choose instead to follow a 
conceptually simpler route (at least to a nonmathematician) which leads to 
the desired end and, in addition, gives rise to some interesting and physically 
satisfactory fringe benefits. 

We begin by imitating MaxwelF TM in calculating coordinate-space 
equations for successively higher moments of the velocity. Maxwell's interest, 
of course, lay in the determination of transport coefficients from the kinetic 
theory of gases, whereas the present equations are derived from the F P K K  
equation. Though the hierarchy thus generated is not closed, it nonetheless 
affords, at any level, a formally exact coordinate-space description of the 
Brownian process. The moment equations may be solved and combined in a 
manner which permits a systematic expansion in inverse powers of the friction 
constant ft. The Smoluchowski diffusion operator then appears straight- 
forwardly as the leading term of this asymptotic expansion. Consideration of 
the first five equations of the hierarchy is sufficient and necessary to effect the 
explicit determination of the lowest order correction term. 

The method can more generally be applied to reduce a many-particle 
F P K K  equation which includes both interparticle forces and full hydro- 
dynamic interaction to the corresponding many-particle diffusion equation. 
For this system, however, it has so far been possible to obtain an explicit 
correction term only when hydrodynamic interactions are absent. 

Before attending to the single-particle equation, let us briefly discuss the 
limitations of some of the other known methods for handling this problem. 
All of these proposals succeed in obtaining Smoluchowski's equation; but 
all, it would seem, have failed to ground the result in a fully consistent 
development. 

The desirability of having an asymptotic expansion of the coordinate- 
space operator in powers of ~- 1 has previously been recognized, (1~-2~ and 
in several cases (16,17,~9~ lowest order correction terms have also been pre- 
sented. These terms, although derived from the same hierarchy of moment 
equations to be considered here, are incorrect, most probably because of 
incomplete analysis of the hierarchy2 

Brinkman's (21~ method also resembles the present one. This method is 
blemished by the superfluous choice of an initial Maxwellian velocity dis- 
tribution, but it suffers more seriously from an uneconomical choice of 
moments. These higher moments (Hermite polynomials in the velocity) are 
actually linear combinations of the physically more important moments. 
This mixing prevents the straightforward collection of all terms of a given 
order, and may lead to errors. For example, Brinkman obtains his lowest 

a We feel sure of this with regard to Ref. 19. Our knowledge of Ref. 16, however, is based 
solely on results and descriptions provided in Refs. 17, 18, and 20. 
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order equation by ignoring the second and all higher moments, but in the 
process he neglects a contribution of the same order as terms retained. 

Brinkman's lowest order equation is actually the Laplace transform of 
the so-called telegraph equation. ~ This equation has been proposed several 
other times as a generalization of Smoluchowski's equation. Two methods r 
are related to Brinkman's scheme. In the others, ~1~ there is a failure to 
appreciate that the second moment (the kinetic contribution to the mo- 
mentum transport in the present scheme) relaxes only slightly faster than the 
first moment, the current. It is thus inconsistent to use the asymptotic form of 
the second moment in an exact equation for the current and attribute signifi- 
cance to the result for other than long times. Now, it may be that for some 
fundamental reason the telegraph equation does afford a better description of 
Brownian motion than the Smoluchowski equation. In this regard we make 
only the following observation. It is not difficult to compare (numerically) 
the solutions of the telegraph equation ~1~ and the diffusion equation for a 
free particle with an initial Maxwellian velocity distribution. What we have 
found, in agreement with Hemmer, ~26~ is that particularly for short times it is 
the solution of the diffusion equation rather than the telegraph equation that 
is in much better agreement with the "exac t "  distribution obtained from the 
Langevin equation. Furthermore, only for times greater than about 10(m/~), 
where m is the mass of  the particle, does the solution of the telegraph equation 
come into good agreement with the other two. An additional quirk is that the 
telegraph equation is a hyperbolic equation for the density because of the 
presence of a second-order time derivative. This would ordinarily imply 
freedom in choosing initial values for the density and its first time derivative. 
Yet, from the moment equations [Eqs. (2)-(6)] it can be seen that once the 
initial density and velocity distribution have been chosen, the initial values of 
all the remaining moments and their time derivatives are determined. 

Other reduction schemes ~27-~~ have been based on a Chapman-Enskog 
approximation in which the entire time dependence is assumed to reside 
entirely in the coordinate-space distribution function. A physically equivalent 
assumption is made by de Groot  and Mazur, C31~ who factor the full distribu- 
tion function into a coordinate-space distribution function and a locally 
Maxwellian velocity distribution. Though these assumptions are physically 
reasonable, they are unnecessary for the attainment of the desired result. A 
more rigorous alternative has been presented by Resibois, r but even here a 
linearized F P K K  equation has been used. 

In closing this (possibly incomplete) survey we first note two recent 
developments in polymer theory. In one, Kramers' procedure has been 
employed ~32~ in reducing a many-particle F P K K  equation with hydrodynamic 

4 Strictly, the telegraph equation has the form of Eq. (12) with K absent, but we will use 
the term in a looser sense, applying it even when K does not vanish. 
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interaction to the diffusion equation governing the motion of the polymer 
chain. In the other, (33) a formally exact coordinate-space equation, formu- 
lated in terms of generalized coordinates, was derived for a many-particle 
system without hydrodynamic interaction. The Smoluchowski equation in 
generalized coordinates (or Kirkwood equation ~34>) is obtained after several 
approximations, including the assumption of locally Maxwellian velocity 
distributions and the neglect of inertial terms in the moment equations. In 
these latter aspects, the method is similar to the original derivations (3~'35) of 
this equation. 

Finally, we observe that the existence of F P K K  equations is sufficient, 
but apparently not necessary, to permit the derivation of Smoluchowski 
equations. Illustrative of this point are several derivations (36~ of many- 
particle diffusion equations which begin with the Liouville equation and 
avoid recourse to an intermediate F P K K  equation. The calculation of 
correction terms using this alternate approach is certainly a desirable goal for 
future work, but for now we restrict our attention to a development based on 
F P K K  equations. 

2. S INGLE PARTICLE IN AN EXTERNAL FIELD 

The distribution functionf(r,  u, t) satisfies the F P K K  equation ~7'~ 

Of/~t + u.Vf+ m-~K.V~f = (~/m)V~.[uf + (kT/m) Vj] (I) 

where r and u are the position and velocity vectors, K is the external force, 
and ~ and m are the friction constant and mass of the particle. The coordinate 
space density is defined as 

w(r, t) = f f du (2) 

The following equations define successively the current, 

j = f ufdu (3) 

the kinetic contribution to the momentum flux tensor, 

P = m f uufdu (4) 

a tensor proportional to the kinetic energy flux tensor, 

Q = m 2 f  uuufdu (5) 
J 

and finally 

R = m ~ f uuuufdu (6) 



158 Gerald Wilemski 

Exact coordinate-space equations involving these moments may be obtained 
by multiplying Eq. (1) by the appropriate product of u's and performing the 
necessary integrations. The first three of these equations are 

Ow/St + V.j  = 0 (7) 

m Oj/Ot + V .P  - Kw + ~j = 0 (8) 

rn 8P/St + V. Q - m(Kj + jK) - 2~kTIw + 2~P = 0 (9) 

The Laplace transforms of these three equations may be combined to give 

where 

= w(0) 
V.j(O) ft. [V. P(O)] 
s + ~ + m(s + fl)(s + 2~) 

1 [2/~kTV~, ] 

v . ( v . ( v . 0  - + 

m(s + + 
(10) 

= (11) 

and w(0), j(0), and P(0) are initial values. Note that K may be time dependent. 
Equation (10) can readily be inverted to give an exact differointegral 

equation for w that is valid on the same time scale as is the F P K K  equation. 
Although the practical utility of this equation is limited by the presence of  the 
additional unknown function Q, it can be systematically expanded and 
converted into the desired asymptotic expansion of the coordinate-space 
operator. Care must be taken, however, to properly account for the lowest 
order contributions arising from the term involving Q. With Eq. (10) at hand 
this is a convenient place to interrupt our development of  the asymptotic 
expansion and, instead, to complete our discussion of the telegraph equation. 

This equation 

fl-1 82w/St 2 + 8w/St = ( k T / O V . [ V w  - ( k r ) - i K w ]  (12) 

has the following Laplace transform: 
/ x ,  

s~ = w(O) + (s + fl)-~(aw/at)t=o + (s + ~)-~(kr/m)V.[Vff~ - (kT)-~(Kw)l  
(13) 

Upon realizing that 

(Ow/Ot)t= o = - V.j(0) (14) 

we see from simple inspection of Eq. (10) which terms must be inconsistently 
neglected in order to obtain Eq. (13). 
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It is also interesting to note ~22,2~'26) that for a free particle with an initial 
Maxwellian velocity distribution, Eq. (12) gives 5 the exactOrnstein-Uhlen-  
beck c12~ result for the average square of the particle displacement ( ( r -  r0)2), 
where r0 is the initial position. In fact this result is purely accidental. From 
the exact Eq. (10) we see that the last term rigorously vanishes in the averaging 
and for the Maxwellian distribution the contributions from the P(0) and 
V.Vw terms combine to give just the result of the telegraph equation. The 
average displacement may also be calculated correctly from the telegraph 
equation, even for an arbitrary initial velocity distribution, but as noted 
previously, ~4) no higher moments will be correctly determined by this equa- 
tion. Furthermore, if external forces are present or the initial velocity dis- 
tribution is not Maxwellian, not even ((r - ro) 2) will be given correctly. Of 
course, exact results may always be obtained from Eq. (10), using when 
necessary the exact equations for Q, R, etc. 

Resuming pursuit of  the desired goal, an expansion in which only 
spatial derivatives of  w are present, we proceed by solving Eqs. (8) and (9). 
For  example, the solution to Eq. (8) is 

f; j(t) = j(0)e -Bt - m -1 dz e-~(t- ' )[V.P(,)  - K(T)w(~)] (15) 

Successive integration by parts generates the asymptotic expansion 

j(t) = (i.v.)e -B~ - m-Z[/~-l(V.P - Kw) 

- [ 3 - 2 ( V . O P / O t  - O ( K w ) / O t )  + ...] (16) 

The designation (i.v.) indicates the collection of all initial value terms. These 
always decay at least as fast as exp(- f l t ) .  Equation (9) may be similarly 
solved and expanded. We find 

P(t)  = (i.v.)e -~t + k T I [ w  - (2fl) -1 ~w/Ot  + ...] 

+ (2/3)-Z(Kj + jK - m - i V . Q )  + ... (17) 

To be consistent, the time derivatives of the moments must themselves be 
replaced by their asymptotic expansions. These may be calculated either by 
directly differentiating Eqs. (16) and (17) or by iterating these expressions in 
Eqs. (7)-(9). In similar fashion, expansions for the higher time derivatives may 
be calculated. This iterative process generates the desired expansion in inverse 
powers of the friction constant. A shortcut in the early going would be pro- 
vided by expanding the inverted form of Eq. (10). In any event, no matter 

5 The telegraph equation has no explicit velocity dependence, but a particular value of 
(Ow/Ot)t=o is required in order either to perform averages with or to solve Eq. (12). 
Equations (3) and (14) should be used to infer this value. This will maintain a consistent 
basis for comparison with averages calculated from Langevin or FPKK equations with 
a specific initial velocity distribution. In the above example, the initial Maxwellian 
distribution implies that (Ow/Ot)~=o = O. 



160 Gerald Wilemski 

which particular route is taken, the final result is always the same. One finds 

~w/at  = - V . j  (18) 

where 

j = (i.v.)e-B, + js _ m - l f l - 2 { 8 ( K w ) / a  t _ (3kT/2)  V 8w/at  

+ (1/2)V.[(Kj s + jSK) - m- iV.Q]}  + m - ~ f l  -a  a2(Kw)/St  2 + ... 

(19) 
and j~ is the single-particle Smoluchowski current 

j~ = - ( k T / [ ) [ V w  - ( k T ) -  ~Kw] (20) 

Only terms that give rise to the lowest order corrections have been displayed. 
In order to calculate the corrections explicitly in terms of w, the exact 

equations for Q and R must be available. These are 

m 8 Q / S t  + V.R - mK,P  ~1) - m ~ k T J  + 3~Q = 0 (21) 

and, with only the display of terms that contribute to lowest order, 

m ~R/a t  + ... + 4~R = m ~ k T P  <2) (22) 

Here, J, P<~), and p<2) are defined by 

J = ffvu2(uuu) du (23) 

K.ec~) = m f f K .  V~,(uuu) du (24) 

p~2) = m f/v. (uuuu) de (25) 

After performing the required operations, we find that in lowest order the 
terms contributed by Q and (3/2) V aw/St  cancel, leaving 

Ow/Ot = - V . j "  + m-lfl-2V.[�89 ~ + jsK) -- KV.j ~] 

+ m-~ f1 -2  V.[w OK/at - f l -~w  O2K/Ot 2] + ... 

+ (i.v.)e -Bt (26) 

which is Smoluchowski's equation plus the desired correction terms. Notice 
that these lowest order correction terms vanish if there are no external forces 
present, leaving us with the diffusion equation, initial-value terms, and 
possibly only much higher order corrections. This seems consistent with the 
role of the friction constant in damping out accelerations. The absence of 
external forces implies the absence of accelerations other than those arising 
from the stochastic force on the particle, and the solution to the diffusion 
equation is a very good approximation to the Langevin distribution function 
for this case. Inspect, for example, Eqs. (171) and (172) of Chandrasekhar. ~9) 
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Note, however, that the Brownian particle never forgets its initial velocity in 
a finite time (unless fl ~ oo, but D = k T / ~  is finite). This is in contrast to the 
solution of the diffusion equation. 

The initial-value terms in Eq. (26) will decay to less than 0.01% of their 
original values in times on the order of 10/3 -1. This suggests that the Smolu- 
chowski equation may be valid on much shorter time scales than were 
previously recognized. In the aforementioned calculation, for example, at 
t = 10ft -1 reasonable agreement was obtained between the solution of the 
diffusion equation and the exact Langevin distribution function. 

Of perhaps greater importance is the size of the correction term in Eq. 
(26). In this regard it may be instructive to examine Eq. (26) for several special 
cases. For three-dimensional problems with spherical symmetry and time- 
independent K, Eq. (26) reduces to 

8 w / S t  = - r -2(8 /Sr){r2 jS[1  - (mf l  2 ) -1  8 K / S r ] }  (27) 

where 

j s  = - ( / c r l O ( e w l a r  - K w )  (28) 

Similarly, in one dimension we have 

8 w / S t  = - (8 /Ox){ j s[1  - ( m f l -  ~ ) -1  8K /Sx] }  (29) 

For the Smoluchowski equation to be a good approximation, the inequality 

~-x << 1 (30) 

must be satisfied. I f  K is derivable from a potential, this inequality becomes a 
condition on the curvature of the potential. In both of the above cases, 
although not in general, the lowest order correction vanishes if K is constant, 
as, e.g., is approximately true for the gravitational force near the earth's 
surface. 

A desirable check of the validity of our results can be made for the case 
of a harmonically bound particle. Equations (27) and (29) may now be solved 
exactly, since they have the form of the uncorrected Smoluchowski equation 
with a modified diffusion constant. It is easy to verify from the exact Langevin 
distribution function for this problem, Eq. (213) of Chandrasekhar, {9) that 
the modified diffusion constant is correct to the order presented. 

3. M A N Y  I N T E R A C T I N G  PARTICLES 

We now turn our attention to a system of N interacting particles 
in which the effects of hydrodynamic interaction are included through 
the presence of a position-dependent interparticle friction tensor g~j. The 
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N-particle distribution function F({r), {p), t) satisfies the FPKK equation 

~F/~t + ~ (mi-lp,.V,F + K,.V,'F) = ~ ~ V,'.g,,.(rn~-lpyF + kTV, 'F)  
i t J 

(31) 

where K~ is the force on particle i derivable from the usual potential of mean 
force, and ms, r~, and p~ are the mass, position vector, and momentum of 
particle i. Equations of this form have recently been derived from microscopic 
considerations for systems of massive simple particles <a~ and for poly- 
meric systems. (32> Reduction of the FPKK equation with hydrodynamic 
interaction was apparently first considered by Aguirre and Murphy, C29) who 
used a Chapman-Enskog scheme to obtain the Smoluchowski equation. 
Our reduction to a many-particle diffusion equation proceeds in the same 
spirit as in Section 2, but varies in detail because of the added complexity of 
Eq. (31). 

The use of supermatrix notation facilitates the presentation. Unsub- 
scripted boldface symbols represent column or N • N matrices whose 
elements are vectors or tensors, respectively. First, define a diagonal super- 
matrix W whose elements are 

Wit = mi 'q  (32) 

where I is the unit dyadic. Then, let 

= W.K (33) 

7t = W.~ (34) 

and 
p = g . w  (35) 

and define the coordinate-space distribution function 

~b({r}, t) = f F d{p} (36) 

and the higher moments 

j, = mr 1 f p,F d{p} (37) 

U(2) = (mimj)- x f d{p} (38) pipjF ff 

U(3) ~j~ = (rntmjmk)-I pipjp~F d(p} (39) 

Equation (31) may now be rewritten as 

~F/~t + pT-W-VF + KT-V~F = (Vr)T.~.(W.pF + kTVPF) (40) 
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where superscript T designates the transpose, and the following exact moment 
equations may be obtained: 

Or + Vr.j = 0 
(41) 

Oj/Ot + (VT.U<2~) ~ -- ~ #  + X.j = 0 

(42) 

~U~2)l~t + Vr.U (3) - (3f'j r + jogt rr) - 2kTW.~.W~b + X.U (2) + U(2).p = 0 
(43) 

where 

(w.u'3')j~ - ~ v,.ulj~ (44) 
i 

The formal solutions of Eqs. (42) and (43) are 

f; j(t) = [exp(-  ~.t)].j(O) - d~- {exp[- X(t - ~')1)" [(W.IY~) ~ - ~ 1  

(45) 

and 

~J~)(t)-- [exp(-XOl.VC~)(O).[exp(-OO] 

+ 2kT~ dr {exp[-~.(t - z)] } DWa ~ BWQ~exp~ p~t ~-)1)~(,-) 

- f f  d~" {exp[-X(t - ~')]}'[V~"IY~(O 

- (~u r + jo'r exp[ -  O(t - r)l (46) 

where the exponentials are defined by their series expansion. Since 

W . e x p ( -  pt) = [exp(-Y,t)]-W (47) 

then 

[ e xp ( -X t ) ] .W.g .W.exp ( -p t )  = [exp(-2Xt)].X.W (48) 

and a single integration by parts produces 

2 dr {exp[-X(t - ~-)]}.W.g.W.{exp[-p(t - ~)]}~(0 

= - [ e x p ( - 2 ~ . O ] . w ~ ( o )  + wO(O 

f2 -- dr {exp[- 2)t(t - z)]}. W 0~/0z (49) 

Assuming the existence of X-x, Eq. (45) may also be integrated by parts, and 
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after the insertion of Eqs. (46) and (49), one obtains the formally exact 
expression 

j(t) = P + [exp(-Xt)](i.v.) 

f2 + dr X-~.{[Vr.(exp[-2X(t - ,)] .W(O~/O,))l 'kr 

+ exp[-X(t  - r)]. (O/Or)[(V T.Uc2~) r - ~"~] 

+ [ v ~ . ( e x p [ - x ( t -  , - ) l . [W.u  ~ 
_ (,:,-~jT + j , X ~ ) l . e x p [ _ p ( t  _ ~.)1)1 r} 

where the generalized Smoluchowski current is found to be 

Since 

where, obviously, 

X - 1 = ~ - 1 .  M 

(50) 

(50  

(52) 

(53) M ~ W - 1  

the usual (8~176 form for j" is obtained 

j~ = - g -  l . ( k T  V~b - Of'q,) (54) 

Further explicit progress in calculating a first correction term has so far 
been made only when hydrodynamic interactions are absent. I f  the remaining 
diagonal elements are isotropic and constant 

~s = 8tj~I (55) 

and the moment equations simplify greatly, allowing us to proceed exactly as 
in Section 2. As before, the exact equations for 1T(z~ and the next higher v,.J t j k  

moment must be calculated, solved, and systematically expanded. The 
operations are simple, but tedious, to perform, and it is uninstructive to 
display them. The result of the analysis is the following expression: 

~ / a t  = - ~ V,. j~ + [exp(-  I]t)](i.v.) 
i 

- [flj(/3, + flj)]-i V,.[Vs.(m;1Kjj o + jjOK,m/-1)] 

+ k r ~ s  - fl,)(m,m;/V#,2) -1 V;[V, . (K#)])  

- ~'  (fl,2m,)-~ V,. [r - f i r '  O2K,/Ot2)l + "'" (56) 
t 

where j o is the free draining Smoluchowski current 

j o = _ r ~(kT V# - K#) (57) 
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The last term in Eq. (56) accounts for the possiblity that a time-dependent 
external force might also be present. 

Despite its added complexity, this result greatly resembles the earlier 
one for a single particle. The expression simplifies somewhat if all the friction 
constants are identical, and, of course, it reduces properly to the earlier case 
if N = 1. Note again that all purely diffusionlike corrections are absent, so if 
all forces vanish, Eq. (56) reduces, as far as the order presented, to the diffu- 
sion equation for N independent particles, a result which happily does not 
conflict with our knowledge of the exact solution of the FPKK equation for 
this case. 

Regarding the applicability of the Smoluchowski equation, remarks 
similar to those ending Section 2 could be made. It would be gratifying if the 
correction terms derived here could prove to be more than qualitatively 
useful in this respect. (1~,25,~1~ 

4. M O M E N T U M  FLUX T E N S O R  IN P O L Y M E R  V I S C O S I T Y  

A simple application of the preceding method can be made to a problem 
of current interest. <3~,~2,~a~ It is now known (42'~a~ that an expression for the 
intrinsic viscosity [,/] of a polymer solution can be written in terms of the 
autocorrelation function of an off-diagonal element jx~ of the momentum 
flux tensor 

iV 

J = (58)  
t = 1  

The required average of J is calculated with the aid of the Green's function 
~b({r}, (r~ t) of the many-particle diffusion (Smoluchowski) equation, 

<J) = f ~ba d{r} (59) 

The corresponding problem in the full polymer phase space has not yet 
been completely treated. (az,~a~ However, it is believed (~a~ that the stress 
tensor in this case is given by 

Jv = ~ (m~-lp,p, + r,N) (60) 
t 

and the appropriate average here is 

= f J,F({r}, {p}; {r~ {pO}; t) d{p} d{r} (61) <J,> 

where F is the Green's function of the FPKK equation of the polymer. 
The momentum average may be performed in the previous manner, and 
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to lowest order in the inverse friction constant, with the neglect of initial- 
value terms, 

(Jp) = ~ f (kTI + r,K~)~b d{r} (62) 

An integration by parts reveals that the following expression for Jp is identical 
to the preceding one: 

( J , )  = ~. f (r,K, - kTr, V, In r d{r} (63) 

Interestingly, the diffusion force term, previously suggested on intuitive 
grounds, <4~> appears in this latter form. As known, <~2'~3) however, this term 
makes no contribution to J~Y when the average is performed using a full, i.e., 
unconstrained, set of coordinates. 

5. C O N C L U S I O N  

The Fokker-Planck-Klein-Kramers equations for a single particle in an 
external field and for many interacting particles have been rigorously reduced 
to the corresponding Smoluchowski equations. An iterative method was used 
which involved the asymptotic expansions of the solutions of the exact 
equations for the position-dependent moments of the velocity. The method 
does not involve the assumption of any special initial conditions nor of local 
equilibrium in the velocity distribution (or physically equivalent assumptions). 

The principal result is an asymptotic expansion of the coordinate-space 
diffusion operator in powers of the inverse friction tensor (or constant) in 
which the Smoluchowski current appears as the leading term. In addition, 
lowest order correction terms have been explicitly calculated in terms of the 
coordinate-space distribution function for both a single-particle system and a 
many-particle system free of hydrodynamic interaction. 

In closing, it is important to mention that, so far, these results are firmly 
established only within the framework of classical Brownian motion theory 
and depend on the validity of the FPKK equations, Eqs. (1) and (31). It will 
be interesting to reexamine this problem taking into consideration recent 
developments (45~ in the theory of the long-time dependence of time correlation 
functions. Some initial work in this direction is presented in the appendix. 

APPENDIX.  REDUCTION OF A N O N - M A R K O V I A N  FPKK 
EQUATION 

Very recently Hwang and Freed (46~ have used the Chapman-Enskog 
approach to derive a non-Markovian many-particle diffusion equation from 
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a non-Markovian F P K K  equation. We take the opportunity here to present 
an alternate derivation based on the use of moment equations. The non- 
Markovian F P K K  equation <a~ involves a time-dependent memory 
kernel G(t) which is independent of the Brownian particles' momentum at our 
level of consideration. For  simplicity we let all of  the Brownian particles be of 
equal mass m; then the F P K K  equation reads 

aF/~t + m- ll)r. VF + K r .  VPF 

yi = ( v . )  * .  d~-G(t - ,).[ffnkT)-lp + Vqf(,)  (A.1) 

where we have again employed supermatrix notation. 
From this equation we readily calculate the following two Laplace- 

transformed moment equations: 

sj - j(0) = -(Vr.17J(=)) r + m - l K ~  - (rnkT)-~G.j (A.2) 

and 

where 

slSJ (~')- U(2)(0) = IZI - (mkT)-l[G.f_J (2) + [TJ(2).G] (A.3) 

n=O 

Now, since 

(-- 1)"(sI + [3)".1~-([3-~) "+x 
r~=O 

= mkT ~ (-1)"(sl ~-1 + I)" (A.10) 
t ~ 0  

= (mkr/2)(I + �89 (A.11) 

lel = 2 m - 2 ( ~  - [Vr.U (a) - m- l (Kj  r + jK~)] (A.4) 

We need to consider only the small-s behavior to account for the long-time 
dependence. Hence, Eq. (A.2) yields 

j ~ - [g(s)]-l .  [m(Vr. 17W))r _ K~] (A.5) 

where 

~(s) = (kT) - Id  (A.6) 

defines the s-dependent friction tensor. 
If  we further define 

13(s) = m-~g (A.7) 

and rearrange Eq. (A.3) to read 

17J ~m = [ft + U(m(0)].} -1 - (sI + })-ITJ(m.[B -1 (A.8) 

we may iterate to obtain the formal solution 

I7/(2) = ~ ( -1 )" ( s I  + [3)".[ft + U(m(0)J.([B-1) "+1 (A.9) 
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we find in lowest order 

0 (2) ..~ (kT/m)(bI (A. 12) 

After Eqs. (A.12) and (A.5) are combined, inverted, and substituted in 
the equation of continuity, we obtain 

~b/~t = dr Vr. I ) ( t  - ~-).[V - (kT)-lK]~b(,) (A.13) 

where 17)(t) is the Laplace inverse of the supermatrix of s-dependent diffusion 
tensors, 

D(s) = k T g  -1 (A.14) 

Equation (A.13) is the desired non-Markovian many-particle diffusion 
equation. 

Two additional comments are worth making. First, because G(t) has 
been approximated to be momentum independent and because of the 
asymptotic nature of the result, Eq. (A.13) is less general than the earlier 
results (a~) of  Falkenhagen, Ebling, and Gray. Second, the propriety of using 
the approximate, momentum-independent form for G(t) in non-Markovian 
F P K K  equations is not yet completely decided. (~7) 
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